国产精品久久久久久天堂-大鸡巴操小骚货免费观看-青青草原网视频在线观看-男人和女人黄色视频在线观看

You path:  Home >> NEWS >> Design considerations for enha...
Design considerations for enhancing LED efficiency
Mike  2012-10-29 02:03:31  

Understanding LED design, manufacturing, and packaging can allow lighting manufacturers and designers to deliver optimal solid-state lighting, explains Thomas Davenport of Synopsys.
+++++

This article was published in the October 2012 issue of LEDs Magazine.

View the Table of Contents and download the PDF file of the complete October 2012 issue, or view the E-zine version in your browser.

+++++

Phosphor-converted white LEDs are ubiquitous today, although there is still significant room from improvement in terms of optical efficiency. Packaged LED manufacturers spend considerable time constantly improving all elements of component design, manufacturing, and packaging to optimize efficiency. In this article, we will cover the latest trends in chips, optics and package architecture. These details are increasingly important all of the way through the solid-state lighting (SSL) supply chain and even lighting designers and specifiers need to understand the unique properties of LED sources.

 

Fig. 1. Typical blue LED configurations: (a) A top-emitting configuration for InGaN blue LED grown on sapphire substrate. (b) The entire chip is flipped so the top layer of the chip is the sapphire.
Fig. 1.
LEDs have a rich history, and many people on many continents have put quite a bit of work into them over the last several decades. The first LEDs we would recognize as such today were red and arrived in the 1950s, followed by yellow, orange, and green LEDs in the 1960s and 70s. The semiconductor materials for these colors are the gallium phosphide (GaP) materials: gallium arsenide phosphide (GaAsP), aluminium gallium indium phosphide (AlGaInP), and GaP.

These early LEDs were acceptable for some applications, such as indicator lights, but without higher power and a blue source, they were not suitable for general, white-lighting purposes. Fortunately, a breakthrough from Shuji Nakamura (while at Nichia) in the early 1990s solved this problem. He developed nitride-based semiconductors – specifically those using indium gallium nitride (InGaN) – which allowed blue light to be produced.

After blue was available, it was found that green could be made with InGaN materials. There was also a substantial effort to improve red LEDs (e.g., for stop lights and tail lamps on cars), and some design teams pursued white-light solutions using RGB mixing (for instance, using AlGaInP to make red and InGaN to make green and blue). For many general lighting applications, however, the RGB approach has been abandoned in favor of InGaN-based, blue-LED-chip-plus-phosphor (typically yttrium aluminium garnet (YAG) materials) solutions. The phosphor-converted LEDs are simpler, more robust devices when white light at a single color temperature is desired, requiring no active color feedback electronics, and fewer individual LED chips.

Configurations

For InGaN-based LEDs, the GaN-type epitaxial layers (crystalline deposition layer – in this case the GaN materials – over a crystalline substrate that it is in registry with) are typically grown on a sapphire substrate, or in some cases silicon carbide. Sapphire is chosen due to its wide availability, crystalline symmetry, ease of handling, and transparency.

 

Fig. 2. Escape cones for light in an LED: (a) One of the escape cones shown for a point source in a silicon medium that is surrounded by air. (b) Si chip is immersed in a silicone dome much larger than the chip size; thereby increasing the escape cone.
Fig. 2.
Often sapphire’s transparency is utilized in a flip-chip configuration, where the p-n junction materials are first grown on top of the sapphire. Then, the chip is flipped over so that the top surface is the transparent sapphire. Fig. 1a shows a top-emitting blue InGaN LED configuration and Fig. 1b shows the flip-chip approach, where the sapphire is the outer substrate. In addition to presenting a typically lower-refractive-index substrate (i.e., sapphire) to the surrounding material, this approach also requires no bond wires. A laser lift-off technique has also been developed, and in LEDs employing this approach, the sapphire substrate is removed after the flip occurs, resulting in a thinner chip with a GaN layer at the top that is more suitable for texturing than sapphire. Texturing can improve light extraction. In any case, phosphor is applied to the emitting surface to produce white LEDs.

LED efficiency

LED efficiency has multiple components. It can be divided up into at least five parts: ηelectrical , the electrical contacts and resistance losses; ηIQE , the internal quantum efficiency of the active layer; ηLex, the light extraction from the chip; ηphosphor , the phosphor conversion efficiency when making white LEDs; and ηpackage, the light extraction out of the LED package. The total wall plug efficiency of a blue LED without phosphors, for instance, can be expressed as follows:

 

The total white-LED efficiency also includes the phosphor conversion, and is more complex, since only a portion of the LED’s flux is converted. Devices using a flip chip with the laser lift-off technique and a proprietary, high-reflectivity silver (Ag) layer as a mirror (pioneered by Osram) have been shown to give a total wall plug efficiency of 53.3% for a blue LED.

Light extraction efficiency

 

Fig. 3. Flip-chip LED using recycling: (a) A 2D configuration of the system shows that rays that don’t exit the chip immediately are randomized and strike the reflecting layer below giving them multiple chances to escape. (b) A 3D view of the system shows the textured n-type GaN surface on top.
Fig. 3.
Now let’s briefly consider some of the different efficiency factors separately and to see how to maximize them. Light in the LED is produced at the p-n junction when an electron-hole pair combines and a photon is emitted in the process. Thus, photons are created inside of a material rather than in air – where we would ultimately like them to go. This is a problem because the refractive index of the chip material is high compared to that of air. In fact, if we immerse the chip in any material of lower refractive index (such as air or silicone), the rays striking the chip/air interface will totally internally reflect (TIR) if the incident angle is above the TIR angle. The TIR angle is given by rearranging Snell’s law of refraction where n represents the index:

 

Thus, this angle will change depending on the chip’s index and that of the surrounding medium. Some common chip materials include: crystalline silicon (Si) with an index in the 3.0-4.0 range, GaN with an index of 2.3, and sapphire with an index of 1.77.

If the chip material is Si and it is placed in air, then θTIR = 15.3° using nchip = 3.8. θTIR defines the half angle of a cone, and rays outside of this escape cone in the Si can become trapped in the chip and never get out. For a rectangular solid chip, there may be up to six escape cones depending on whether or not transmissive materials are used above and below the p-n junction. However, one of the cones typically is in the direction of a substrate and rays that would have escaped are either absorbed or reflected.

One of the escape cones for a Si chip in air is shown in Fig. 2a. Rays above the cone’s half-angle (given by θTIR) totally internally reflect and then stay in the chip. One way to improve the situation is to immerse the chip in a surrounding index that is higher than air. Typically, the material used is silicone, with an index of roughly 1.47. Immersing the Si chip in silicone increases the escape cone’s half angle to 22.8°. A dome larger than the chip is typically used, since it results in very little refraction (ray deviation) and therefore does not cause further TIR issues.

The problem shown here can also be thought of as an étendue mismatch between the source and the index we would like to put light into—namely, air. Étendue is a preserved quantity in an optical system and is given by:

 

This equation implies that in an optical system, the source size, its projected angular extent, and its surrounding refractive index define a constant étendue value. If we try to squeeze this étendue into an area of the same size, but with a lower refractive index, and the projected solid angle of the source is already full (as in this case), there will be angular clipping of the flux. This is exactly what we see going on here.

Étendue also has other consequences. For instance, if we want to collimate light from a Lambertian source (like a flat cast LED), it shows mathematically that the output aperture will have to increase in area as the angular extent of the light decreases. If you don’t increase your aperture size, then light will be lost due to spatial clipping. If you like small aperture sizes, it pays to avoid diluting the source étendue if possible.

As shown in Fig. 2b, we immersed the chip in a lower index material and allowed the output surface to grow in order to ease the étendue mismatch. Another approach to help this problem, now standard in the backlight display industry, is to use scattering (in this case textured) surfaces in combination with light-ray recycling. This approach is utilized in many flip-chip GaN systems, including those with laser lift-off removal of the sapphire layer.

In Fig. 3a, we show a 2D image of how this type of recycling system works. Light is generated at the InGaN quantum well junction layer. If it goes upward, it encounters a textured interface at the GaN/silicone boundary and may refract and escape. If not, it is reflected downwards at a randomized angle and then encounters the highly reflective Ag surface at the bottom of the p-layer and goes through the chip again. Fig. 3b shows a 3D view of the chip structure with an example randomized texture. One consequence of this approach is that an electrode is required on the top surface.

Phosphor efficiency

Another critical aspect of phosphor-based white LEDs is the phosphor itself. In modeling phosphor materials, there are many items which must be measured or inferred. For instance, one needs to characterize the absorption spectrum of the phosphor particle, the emission spectra, the quantum yield (or excitation spectrum), the mean free path of the phosphor, the particle size distribution, and the intensity distribution from interactions that do not result in a conversion.

 

Fig. 4. LED phosphor configurations: (a) A conventional phosphor slurry. (b) Conformal phosphor coating on the chip surface. (c) Remote phosphor coating applied inside a remote optic.
Fig. 4.
Once a phosphor model is created, one can adjust the phosphor density in the matrix, among other parameters, to tailor the spectrum to a desired color temperature. Also important for white LED sources is the color rendering index (CRI), or how well the spectrum can render a set of test colors. For LEDs, other metrics such as the newer color quality scale (CQS), similar to the CRI but using more saturated reference colors, and gamut area index (GAI), may also be important in a given phosphor design.

Another issue related to phosphor efficiency is the geometric configuration one should use. Traditional LEDs included a phosphor slurry sitting in a cup as shown in Fig. 4a. Because of the different path lengths from the blue chip through the phosphor, this configuration tends to give an intensity distribution that is bluer in the center and more yellow at higher angles.

Fig. 4b shows a conformal-coating phosphor that follows the chip shape more carefully and gives a much more uniform color over all angles. This type of LED has now become standard and has the added benefit of preserving the source’s étendue better (it does not increase the effective source size very much compared to other phosphor approaches).

Fig. 4c shows a third approach that some design teams are now working on—remote phosphors. There are many remote phosphor configurations possible, but in the example shown, there is a hollowed-out transparent dome placed over a blue LED and a yellow phosphor coating is applied to the inside surface of the dome. This approach tends to have even better color mixing than conformal coatings; however, the source size may be increased dramatically, thus diluting the source étendue.

Package extraction efficiency

There are two primary types of LED package architectures that have emerged over the years: dome and flat cast. Additionally, there are some LEDs that are sold with more exotic optics incorporated on top of the chip – for instance, LEDs designed to make a batwing distribution. For the most part, the LED manufacturers supply dome or flat cast LED sources, and optical designers choose from an array of off-the-shelf output optics or design their own optic implementations.

 

Fig. 5. The radius for an LED domed impacts flux output. A 1x1-mm chip is immersed in a silicone dome (left). The dome’s radius is varied and the fractional flux out of the dome on the first pass is shown in the plot.  A radius of 1mm lets >99.9% of the light out—neglecting Fresnel effects.
Fig. 5.
Typically, when the most important specification in your application is total lumens, dome out-coupling optics provide a better solution. However, if you want to preserve your source étendue as well as possible, then flat cast is usually a better choice. As previously discussed in this article, preserving the source étendue is critical in many situations, such as when the aperture size of your optic is constrained.

Coupling to an optical system

To explore the étendue issue more closely, consider the following example: a square LED chip that is 1×1 mm emitting green light with and without a dome made of silicone with an index of 1.47. In Fig. 5, we show the domed system geometry on the left and the relative source flux exiting the dome on the first pass to the right. A relatively modest dome radius of 1mm allows >99.9% of the chip flux to exit.

Next, let’s set the dome radius to 1mm and then defocus all of the exiting rays back to a plane of best virtual focus. In this example, the best focus occurs at a distance of 0.17 mm above the emitting surface of the chip (that is, away from the chip and towards the dome’s vertex). In Fig. 6, we show the illuminance distribution at the surface of the LED without a dome on the left, and the illuminance distribution at the best focus plane for the domed LED on the right.

In the center of the two raster images, the en-squared flux is plotted for both configurations. The chip without a dome shows a sharp cut-off at a 0.5-mm half-length as expected. However, the effective size of the source is increased dramatically for the domed LED. The 98% en-squared energy occurs at 1.1-mm half-length. This means that the effective source area has roughly quadrupled. If you want to capture all the light in your optical system, the size of your optics must increase to accommodate this.

 

Fig. 6. Flat emitting LED illuminance and domed LED illuminance at best focus.  Spatial distribution at the LED surface is shown on the left for the un-domed LED.  On the right is the virtual best-focus plane illuminance for the domed LED. The effective source area is roughly quadrupled by the dome.
Fig. 6.
In addition to the étendue problem, it is typically much easier to work with a planar source than a hemispherical one. A planar source allows, for instance, the use of classic angle-to-area converters such as a compound parabolic concentrator (CPC) and can reduce design complexity. From a designer’s point of view, the best LED source might be Lambertian, perfectly spatially uniform (maybe even circular instead of square!), planar, and have efficiency equaling dome approaches. Thus, there is always room for improvement, and both dome and flat cast packages will likely be around for a while.

In this article, we have delved briefly into the history of LEDs and the main design configurations used. Additionally, we have looked into the sources of LED efficiency loss and explored design techniques for increasing the efficiency of the light extraction from the chip, phosphor, and package.. www.ledtube5.com www.ledtubes8.com

[Print]  [Close]  

Copyright© Shenzhen Longtech Electronics Co., Ltd    led t8 tubes light, t8 led tube light,  t8 led tube lighting, led t5 tube light, led tube lights t5, t5 led tubes light, t10 led tube lights, t10 led tubes light Sitemap    LED Tube light,LED Tube lamp,LED Tube Light Manufacturer  

 
 
2503564770
 
375737297
 
ete6688523
 
??????????????
 
??????????????
 
 
成人女人毛片免费在线播放| 欧美日韩国产欧美日韩国产| 91在线视频播放怡红院入口| 日韩a人毛片精品无人区乱码 | 色a久久久久噜噜噜久久| 国产精品欧美人人人人爽| 嗯啊嗯啊好快啊啊啊啊我要视频| 国产成人精品亚洲精品青苹果| 国产成人综合日韩精品无码不卡 | 成人无码AV一区二区三区| 国产精品国产免费看福利| 99久久综合给久久精品| 亚洲精品国产第一区第二区| 99精品久久只有精品做人人| 亚洲美女高清一区二区三区| 啊啊啊哦哦大肉棒啊视频| 骚逼性感美女操逼视频免费| 国产美女被遭强高潮免费一视频 | 99久久视频这里只有精品| 男人的天堂日韩爱爱免费| 999国内精品免费永久视频 | 欧美一级婬片AAAAAAA在线 | 精品欧美一区二区三区黑人| 三级国产国语三级在线蔓延| 伊人久久大香线蕉av色| 国产成人精品无码免费看在线| 午夜免费福利视频伊人久久 | 免费精品一区二区三区A片在线| 久久99精品久久久久久国产| 射精爆菊操小穴肛门视频| 精品国产乱码久久久久夜深人妻 | 成人影片APP免费下载| 精品国产2023一区二区三区| 日韩乱码人妻无码系列中文字幕 | 福利片一二区体验区四区| 国产午夜福利大片免费看| 一本到高清中文字幕av| 骚逼 嫩穴 3D 内射| 国产精品久久久久精品三级ⅰ| 男人的鸡巴叉入女人逼里| 女人zozozo禽交高潮喷水| 91亚洲精品乱码久久久久久蜜桃| 懂色av一区二区三区免费 | 欧美 日韩 国内 自拍| 2020国产成人久久精选| 国产精品成人一区二区1| 色噜噜噜噜噜噜噜噜噜噜噜av| 国产乱人伦偷精品视频免观看| 精品人妻欧美一区二区三区| 囗交口爆吞精在线视频4| 午夜成人无码片在线观看| 日本三级全黄少妇三99| 国产性av一区二区三区| 无码AV高潮抽搐流白浆| 阴毛多日b淫水流免费看视频| 久久久久精品午夜福利洋洋av| 校花被下春药高潮八次视频| 亚洲人妻免费视频一区二区三区| 日韩精品一二三区在线观看| 欧美久久久久久久久中文字幕| 超碰人人超一区二区三区| 伊人网视频免费在线观看| 国产美女粉嫩泬免费播放| 中文字幕人成人亚洲乱码 | 啊啊啊好爽用力受不了高潮了视频 | 美女和帅哥搞鸡爆操大奶子骚逼 | 又粗又大又爽又嫩的日逼视品 | 国产丰满老熟女激情视频| 国产丰满老熟好大bbb| 噜噜视频操逼操屁眼app | 成人综合婷婷国产精品久久免费 | 狠狠躁少妇一区二区三区| 高清破外女出血av毛片| 国产精品欧美人人人人爽| 全职法师第6季全集免费观看| 91福利一区二区在线观看| 看看欧美男人大鸡巴操逼| 亚洲国产精品乱码一区二区三区 | 一区二区三区欧美黑人性生活视频| 麻豆最新国产剧情av原创免费| 激情欧美日韩国产在线观看 | 亚洲1区2区中文字幕| 新国产三级视频在线播放| 在线欧美精品国产综合五月| 欧美精品你一区二区三区| 丰满少妇人妻久久久久久4| 鸡巴插逼视频咪咪爱首重播| 一区二区三区欧美黑人性生活视频| 欧美国产人妖另类色视频| 深夜久久久久久久久久久久有| 日本一区二区三区在线网| 激情欧美日韩国产在线观看 | 国产精品片211在线观看| 久久精品中文字幕老司机 | 久久99这里只有精品99| 凹凸日日摸日日碰夜夜爽| 丰满人妻少妇精品麻豆久久网| 国产精品一起草在线观看| 制服丝袜中文字幕自拍有码| 日日摸夜夜添夜夜添国产91| 蜜芽视频精品无码福利一区二区| 熟女人妇 成熟妇女系列视频 | 噜噜噜视频免费在线观看| 俩个男人日屁屁真人播放片| 大胸美女日逼逼视频观看| 6080欧美一区二区三区四区| 亚洲自偷自拍另类在线观看| 亚洲综合网在线观看视频| 91香蕉视频污污污污污| 国产精品69久久久久孕妇| 无码人妻中文中字幕一区二区| 中文字日产幕码三区国产| 男人扒开添女人下部免费视频| 护士大爆乳双腿张开自慰喷水| 日本美女被操逼抠逼8MAV| 国产成人综合日韩精品无码不卡| 伊甸园大象一二三四2021| 99久久综合给久久精品| 亚洲综合色在线免费观看| 精品免费囯产一区二区三区四区| 玩女人小逼视频播放视频| 和大胸美女乳交射精在线观看| 国产一区二区三区av在线观看| 爱人体-看人体人体摄影| 日本久久久久久久久精品夜夜嗨| 精品在线观看中文字幕国产 | 亚洲精品日韩精品欧美综合| 黑人大鸡吧操逼流水视频| 日韩久久久久久字幕人妻| 99久久精品免费观看区一| 久久精品国产亚洲av日韩一 | 男受被做哭激烈娇喘音频| 91黑丝国产线观看免费| 人妻视频区二区二区无码| 性色av一区二区三区久久久| 亚洲av色香蕉一区二区三区蜜桃| 免费观看日韩伦理视频| 国产娇喘激烈呻吟粉嫩喷水捆绑| 东京热专区免费精品人妻视频 | 国产精品无码永久免费男叫| 中国国产不卡视频在线观看| 久久免费少妇高潮视频A特黄| 亚洲丝袜美腿av免费看| 国产日韩av免费不卡在线观看| 大学生初次破苞免费视频| 狗鸡巴C骚逼视频啊好舒服乱伦 | 与人妻秘书中出中文字幕| 亚洲美女高清一区二区三区| 亚洲欧洲美色一区二区三区| 欧美成人av韩国色婷婷| 和大胸美女乳交射精在线观看| 裸体精品BBBBBBBBB| 久久久久久久久久久欧美| 可以插女生隐私部位的视频| 亚洲 欧美 韩日 国产| 青青草原热视频在线观看| av免费大片黄在线观看| 啊哈哈哼啊哈不要在线视频| 人妻视频区二区二区无码 | 日韩一区国产二区欧美三| 91精品国产乱码久久蜜桃av| 国产越长越大越粗越硬| 欧美精品久久久久久久久大尺度 | 国产自美女在线精品尤物| 日产乱码卡一卡2卡三卡四| 亚洲日日做天天做日日谢| 日本欧美一区二区二区视频免费 | 开心五月五月我五月激情| 亚洲不卡一区二区av| 国产亚洲午夜精品久久久久久久| 成人女人毛片免费在线播放| 国产av麻豆精品第一页| 射射射射一区青青草一区| 亚洲国产精品综合久久2007| 精品国产亚洲一区二区三区演员表 | 日本一区二区三区在线网| 18禁裸乳无遮挡免费观看| 男人的天堂日韩爱爱免费| 天天干天天日天天日天天| 国产v欧美v日韩在线观看| 噜噜噜视频免费在线观看| 男人的天堂日韩爱爱免费 | 欧美成人免费大片在线观看| 国产精品99久久免费观| 日本隔壁的日本人妻中文字幕| 91黑丝国产线观看免费| 色哟哟一区二区三区三州| 国产91透明丝袜美腿在线| 久久久性色精品全国免费| 青青青视频蜜桃一区二区| 国产高清第一区第二区第一页| 婷婷色香五月综合缴缴情香蕉| 重口味大黑鸡吧插肥逼Av| 骚屁眼露出当小母狗视频| 精品久久久久久久无码人妻热| 新国产三级视频在线播放| 国产免费破外女出血小视频| 正在播放美女酒店首页国产| 18禁裸乳无遮挡免费观看| 玩儿 50岁女人 操 逼| 国内精品亚洲成av人片| 日韩免费在线观看视频入口| 99精品久久只有精品做人人| 97**精品人妻一区二区三区| 特级淫片女子高清视频国产片| 男女猛烈无遮掩视频免费| 2020年国产精品自拍视频| 99久久蜜av毛片毛片| 曰本真人性做爰全过程视频| 操逼操大鸡吧的软件黄操逼| 国产精品doll一区二区| 久久国产成人高清精品亚洲| 中文第一字幕中文第一字幕色| 男人生殖器插入女人阴道视频| 亚洲熟妇无码av不卡在线| 印度少妇天天诱惑我中文| 丰满人妻一区二区三区免费视频| 亚洲大尺度在线观看视频| 1024国产精品永久免费| 51精品免费视频国产区| 欧美日韩在线免费观看不卡视频 | 国产精品不卡AV再在线播放| 日本一区二区三区高清免费 | 欧美人与禽zozo性伦交| 日韩在线一区二区视频| 6080欧美一区二区三区四区| 亚洲中文字幕精品无码久久| 美女张开腿让男人用机机捅| 免费无码无遮挡裸体视频| 激情欧美日韩国产在线观看| 亚洲精品99一区二区| 亚洲av午夜福利精品香蕉麻豆| 青青草原国产在线精品| 男人把鸡巴插进小穴视频| 黄色靠逼片国产一区二区| 国产一区二区亚洲一区二区三区| 99视频精品全部免费品全整版 | w日本一区二区三区免费高清不卡| 两性色午夜视频国产情侣| 丰满诱人一区二区三区| 亚洲国产午夜精彩无码福利| 成人无码视频在线免费观看| 午夜精品久久久久久久99热额| 青青草原黄色视频在线观看| 大粗鳮巴征服饥渴少妇公交车| 77777亚洲午夜久久多喷| 视频嗯嗯啊啊哦在线麻豆| 伊人网亚洲一区二区三区| 黄片视频尻逼黑色插女人| 伊人久久亚洲婷婷综合久久 | 亚洲欧美日韩综合一区在线| 性开放的交换艳妇俱乐部| 国产成人精品午夜福利在线播放| 精品亚洲成a人片在线观看下载 | 国产村长av一区二区三区| 扒下裤子大鸡巴操屁股软件| 精品一区二区三区老熟女少妇| 国产成人黄色APP下载| 欧美大片在线观看你懂的视频| 在线观看免费av小黄片| 色老99久久九九爱精品| 欧洲亚洲小姐操操操操操逼视频 | 色婷婷综合久久久中字幕精品久久 | 男女在床上导管黄色小视频 | 草草在线观看免费高清在线观看 | 狗鸡巴C骚逼视频啊好舒服乱伦 | 91精品国产自在现不卡| 一区二区三区欧美在线播放| 久久久久久久久久久久久18| 亚洲1区2区中文字幕| 国产一区二区三区精品成人爱 | 女人被插到哭的视频在线观看| 草草在线观看免费高清在线观看 | 丰满岳乱妇在线观看中字无码 | 国产熟女3p贵在真实视频| 久久久久久久久久久久精品优物| 曰本真人性做爰全过程视频| 黄片大全在线免费观看入口| 99麻豆久久精品一区二区| 久久久久久久亚洲国产精品87 | 日本美女大白屁股大逼逼| 91精品国产情侣高潮露脸| 美女裸体爆乳张开腿喷水| 看欧美大鸡巴操B密B操13| 国产成人精品无码免费看在线| 91大神一区二区韩国日本欧美| 亚洲一级二级三级视频在线观看| 亚洲一区二区免费在线观看| 性一乱一交一免费看视频 | 2020年国产精品自拍视频| 免费无码无遮挡裸体视频| 2022性爱视频棋牌自拍| 国产欧美日产草草88av| 久久av喷潮久久av高| 久久精品一区二区三区浴池亚洲 | 欧美日韩俄罗斯另类天堂| 头埋入双腿之间被吸到高潮| 动漫美女爆乳被插骚逼舔鸡吧| 大学生初次破苞免费视频| 亚洲av成人一区二区一本通| 6080欧美一区二区三区四区| 自拍偷拍一区二区三区四| 国内精品视这里只有精品| 国产国语对白又大又粗又爽| 免费看吃鸡巴射到嘴里边视频| 日本一区二区三区免费不卡在线| 91久久综合九色综合欧美98| 欧美猛烈插入女人羞羞下面 | 91欧美成人人妻一区二区三区| 久久香蕉网久久久香蕉网| 99久久国产综合精品女同| 日韩亚洲欧美综合一区| 91精品国产乱码久久蜜桃av| 日韩AV无码免费无禁无码| 国产91透明丝袜美腿在线| 欧美胖女人操逼一级黄片| 外国美女靠逼插逼吞精视频| 亚洲成色777777在线观看| 疯狂婬荡岳乱婬av麻豆| 日韩美女视频一区二区| 欧美一区二区三区视频免费观看| -国产91久久精品成人看-| 伊甸园大象一二三四2021| 亚洲精品区无码欧美日韩| 又黄又爽又高潮的无遮挡| 久久精品国产亚洲av热动漫深喉 | 超碰97女国产丝袜美腿| 欧美黑白配公司极品尤物| 最新无码在线观看2021| 中文国产成人精品久久久| 激情视频中文字幕色综合| 久久人做人妻一区二区三区| 日本一区二区不卡高清| 欧美一区二区久久免费看| 亚洲国产精品日韩在线观看| 91精品国语高清自产拍| 精品97自产拍在线观看| 18岁禁男生c女生视频| 国产精品黄色大片在线看| 少妇免费av一区二区三区久久| 亚洲综合网在线观看视频| 成人无码AV一区二区三区| 欧美精品你一区二区三区| 欧美国产激情一区二区2| 日韩精品视频高清在线观看| 亚洲欧洲国产成人综合在线观看| 野花视频在线观看最新免费3| 免费国产精品激情视频嫩草2| 免费一区播放免费以及国产超碰| 欧美另类偷自拍视频二区| 国产精品午夜看片视频一区二区 | 国产老人一区a v二区三区视频 | 日处女校花逼逼视频免费观看| 亚洲欧美日韩国产综合va| 扒开黑少妇的大黑p阴蒂| 久久久久久免费国产精品| 天天摸夜夜添狠狠添高潮出免费| 欧美久久久久久久久中文字幕| 国产鲜肉帅哥操美女逼内射 | 一级做a爰片久久毛片免费| 大鸡吧操小骚遍视频免费播放| 又黄又爽又高潮的无遮挡| 午夜欧美日韩免费有色视频| 欧美大屁股在线观看视频| 欧美精品综合久久久久久| 日韩精品人妻中文字幕区二区三区| 丰满的女人露逼被操露逼的视频| 免费观看日韩伦理视频| 久久久久久精品免费无码无| 国内精品视这里只有精品| 猛日奶头大的骚逼调教骚穴视频| 干174骚逼模特啪啪视频| 亚洲男人综合久久综合堂| 久久国产视频专区一二三| 日韩av中文字幕一区在线观看| 日韩人妻一码二码三码四码无码| 日韩精品一区二区二三区色欲a| 最近最新高清中文字幕大全| 极品尤物av美乳在线观看 | 日韩乱码人妻无码系列中文字幕 | 久久精品中文字幕老司机| 国产十八禁在线观看免费| 免费观看美女被操视频软件| 不然的话欧美日韩国产色综合一| 九区十一区久久精品国产精品| 美女跟男人大鸡吧玩逼插| 亚洲av优女av综合久久久| 91久久精品美女高潮不断| 免费观看美女被操视频软件| 九九国产激情床戏视频在线观看| 亚洲第一区欧美国产综合| 欧美日韩国产综合第一区| 国产成人精品午夜福利在线播放| 夜夜高潮夜夜爽夜夜爱爱一区 | 成人国产精品一区二区香蕉| 美女裸体爆乳张开腿喷水| 欧美精品久久久久九九九 | 久久久久人妻精品一区三寸蜜桃 | 亚洲不卡一区二区av| 小鲜肉受被大黑吊操屁股| 我想看和漂亮的美女操逼视频| 91精品国产综合久久久免费看| 国产香蕉综合色在线视频| 国产在线精品无码av不卡顿| 6080欧美一区二区三区四区| 欧美岛国小黄片青草日日久| 亚洲综合色在线免费观看| 国产一级一片免费播放下载| 日韩一AA级欧美一AA级特黄| 日本一区二区三区高清免费| 日韩精品久久久久久a| 欧美成人av韩国色婷婷| 瘦老头的大长屌操逼射精视频合集 | 国产精品成人一区二区1| 免费看男女av入口高清| 亚洲av无日韩毛片久久| 激情亚洲内射一区二区三区| 91精品国产综合久久久免费看| 美女被压在身下猛操国产精品| 精品久久综合日本久久综合网| 日韩avtt2014天堂网| 日韩一区二区三区高清视频 | 黄色靠逼片国产一区二区| 午夜免费福利视频伊人久久| 又大又紧又粗C死你视频 | 男人边吃奶边添下面好爽视频| 欧美一区二区三区视频免费观看| 日韩在线观看视频区一区二| 美女被男的将水管放进屁眼里| 小穴湿湿的被操的高潮喷水视频| 额啊大鸡巴男人射精漫画| 男生把????放进女人阴道视| 男女一级毛片免费视频看| 久久AAA级毛片免费看| 亚洲精品日日夜夜免费看| 亚洲欧洲国产成人综合在线观看| 91精品国产乱码久久蜜桃av| 国产越长越大越粗越硬| 国产精品夜夜口嗨av| 亚洲熟妇色ⅹⅹⅹⅹ欧美| 12345国产精品高清在线| 办公室熟妇人妻久久精品| 久女女热精品视频在线观看| 一级爱做片免费观看久久| 日本隔壁的日本人妻中文字幕| 55夜色66夜亚洲精品播放| 欧美黑人巨大巨粗性AAAA| 久久久久一区二区三区中文字幕| 黄色一级人与人毛毛无码| 中文乱码免费一区二区三区下载 | 啊啊啊啊好舒服老公快插进来| 久久精品无码一区二区2020| 狗鸡巴C骚逼视频啊好舒服乱伦 | 疯狂婬荡岳乱婬av麻豆| 91伊人网在线视频观看| 91伊人网在线视频观看| 日本国产最新一区二区三区 | 老师好爽要尿了潮喷了视频高潮| 亚洲av日韩五月天久热精品| 99九九成人免费视频精品| 国产精品久久久久精品三级95| 在线 一区二区三区四区| 美女骚逼诱惑翘臀操骚逼| 久久久久久九九69精品| 啊啊啊好疼轻一点深一点视频| 添BBB免费观看高清视频| 久久久久久精品美人片| 囯产av无码片毛片一级播放| 操逼操大鸡吧的软件黄操逼| 一级黄色视频大鸡吧老板操美女| 无码又爽又刺激高潮视频在线观| 中文字幕 人妻 日韩 在线| 日日夜精品欧洲日日噜噜| 亚洲 一区 福利 在线| 哦哦 不要 啊啊 哦哦视频| 亚洲av日韩av水菜丽| 国产精品三级久久三级| 欧美国产激情一区二区2| 可以免费观看的性爱视频| 秋霞午夜久久成人不卡免费| 美女张开腿让男人出白浆| 青青青视频蜜桃一区二区| 免费看黄色亚洲一区久久| 免费的精品一区二区三区| 亚洲色婷婷六月亚洲婷婷6月| 国产v欧美v日韩在线观看| 一本综合久久国产二区| 91大神一区二区韩国日本欧美| 上司无数次高潮NTR加班 | 国精品无码一区二区三区在线蜜| 国产精品18久久久久久首页| 骚逼性感美女操逼视频免费| 91久久综合九色综合欧美98| 久久永久免费人妻精品直播| 久久 精品 亚洲 国产| 日本精品一二区在线观看| 被男狂揉吃奶胸高潮视频在线观看| 国产剧情办公室黑色丝袜在线| 久久精品国产亚洲av热动漫深喉 | 91香蕉视频污污在线看| 女生高潮喷水视频免费看| 国产精品69久久久久孕妇| 无码AV高潮抽搐流白浆| 91精品国产情侣高潮露脸| 插入白丝美女粉嫩的小b的视频| 欧美日激情一区二区三区| 男人的鸡巴叉入女人逼里| 国产野精品久久久久久久不卡| 97精品人妻一区二区三区四区| 男生肏女生小穴视频吞精| 男生和女生一起努力坤坤软件| 看女生被男生操不是去要看| 91黑丝国产线观看免费| 国产熟女3p贵在真实视频| 亚洲色无码专区在线观看第| 日韩欧美中文宇幕无敌色| 国产91透明丝袜美腿在线| 大鸡巴给肥玩了玩打了民机D我| 美景之屋4伦理中文字幕| 国产成人拍拍拍尖叫高潮 | 欧美美女裸体直播扦B内射| 鼻子下总是长白色的粉刺| 国产精品久久久久久天堂| 欧美日韩精品一区在线播放| 成人美女视频一区二区三区免费| 精品国产粉嫩内射白浆内射双马尾 | 免费国语一级a在线观看| 欧美成人性色生活片肥佬| 国产精品三级在线看免费看| 亚洲精品一区二区三区日韩| 国产精品久久久久9999精品| 久久只有这里才是精品2020| 拧花蒂尿用力按凸起喷水尿| 猛日奶头大的骚逼调教骚穴视频| 欧美综合憿情五月在线观看| 三级人成一区在线观看| 91在线精品国产丝袜超清| 扒下裤子大鸡巴操屁股软件| 国产综合精品久久久久久久爆乳| 日韩精品视频高清在线观看| 亚洲2020一区二区中文字幕| 国产精品久久久久精品三黑人| 国产精品99久久久久久有的能| 91精品国产自在现不卡| 最近最新高清中文字幕大全| 国产精品久久一区二区三| 亚洲av伦理一区二区三区久久| 大鸡巴操无毛白嫩小逼视频| 日本熟妇一区二区三区四区| 日韩精品久久久久久a| 国产老人一区a v二区三区视频| 成人美女视频一区二区三区免费| 亚洲国产精品综合久久2007| 日韩精品中文字幕久久久 | 99精品国产91久久久| 男女猛烈无遮掩视频免费| 中文字幕精品一区二区2020| 骚逼性感美女操逼视频免费| 亚洲国产一区二区三区欧美| 后入精品骚妇精品啊啊啊| 国产v精品欧美精品v日韩| 亚洲日本精品国产第一区二区| av中文字幕在线观看一区二区| 国产精品久久蜜日韩AV一区二区| 伊人久久亚洲婷婷综合久久| 久久99这里只有精品99| 国产野精品久久久久久久不卡| 精品国产综合久久久蜜臀观看 | 激情欧美日韩国产在线观看| 色欲av蜜臀av蜜臀av| 不然的话欧美日韩国产色综合一| 最近高清中文在线字幕在线观看| 亚洲国产精品美女久久久久a| 国产亚洲精品1区2区| 美女张开腿让男人用机机捅| 欧美精品久久久久久久久大尺 | 91精品国产情侣高潮露脸清晰| 精品国产2023一区二区三区| 国产美女粉嫩泬免费播放| 青青草原精品资源站久久| 91精品婷婷国产综合久久8| dadiaoganmeinv| 久久久精品在观看999| 国产无圣光一区福利二区| 亚洲欧洲国产成人综合在线观看| 国产精品国产福利国产秒拍| 伊人久久亚洲婷婷综合久久| 亚洲一区二区免费在线观看| 欧美精品久久久久久久久大尺| 99精品国产综合久久精品自在 | 搞BB内射在线观看视频| 成人 AV动漫在线观看| 国产av无码片毛片一级久| 久久五月婷婷爱综合亚洲| 最近最新高清中文字幕大全| 天天狠天天情天天天天透| 成人精品一级特黄大片| 藏经阁日逼日女人骚逼骚逼| 青娱乐欧美在线视频观看| 大鸡巴肏坏抽插骚逼穴视频好色| 伊人网视频免费在线观看| 日韩一AA级欧美一AA级特黄| 日本国产最新一区二区三区| 2021国产不卡视频在线观看| 黄片大全在线免费观看入口| 吻戏激烈娇喘吃奶摸下视频| 在线 一区二区三区四区| 欧美一级婬片AAAAAAA在线| dadiaoganmeinv| 国产91福利精品免费观看| 亚洲va久久久噜噜噜久久一| 国产越长越大越粗越硬| 91精品国产情侣高潮露脸| 色欲日本人妻久久久久久综合| 黑人巨大开嫩苞高清视91| 亚洲视频不卡一区二区综合| 非洲大吊大战e罗斯美女| 午夜精品久久久久久久99热额| 全彩无翼乌邪恶道邪恶帝| 箱中女1不打码中文免费观看| 欧美国产人妖另类色视频| 国产精品三级久久三级| 无码人妻丰满熟妇啪啪专区| 麻豆久久精品国产亚洲精品超碰热| 久久精品国产亚洲av高清蜜臀| 99久久精品免费观看区一| 奇米777四色午夜天堂| 外国老女人日逼黄色录像| 国产剧情成人手机在线观看免费| 日b视频免费1000部| AV无码成人精品区一级毛片| 2022AV无语在线观看| 亚洲天堂av免费在线看| 禁16情趣白虎美女自慰| 亚洲精品在线观看日本| 欧美日韩国产欧美日韩国产 | 冯延巳鹊踏枝谁道闲情抛弃久| 呢啊啊啊啊n嗯嗯嗯嗯视频| 日韩欧美国产一区二区三区在线| 日日夜精品欧洲日日噜噜| 熟妇骚逼流白浆操逼视频| 欧美日韩精品人妻狠狠躁| 腿掰开使劲插日本在线观看| 国产乱精品女同自线免费高清 | 日本一区二区不卡高清| 亚洲国产美女精品久久久| 精品日本人妻一区二区三区在线| 国产不卡免费黄视频在线| 2018日日摸夜夜添狠狠躁| 亚洲1区2区中文字幕| 少妇mm被擦出白浆液视频| 荷兰黑妞的大黑逼大肥奶 | 99精品久久只有精品做人人| 国产成人AV一区二区三区无码| 欧美一区二区三区日韩产| 伊人网视频免费在线观看| 国产三级片日本三级片在线观看| 日韩精品中文字幕久久久 | 日b视频免费1000部| 日本三级全黄少妇三99| 91污污污视频在线观看| 亚洲av综合色区久久精品天堂| 免费婬色男女野外乱婬视频| 日韩精品一区二区三区2020| 人人妻人人澡人人爽欧洲一区九九 | 小姐干B片放屁在线免费| 青青草原精品资源站久久| 美女人体线路5和美女日女人小穴| 欧美亚洲国久久久久久久| 欧美bbbwbbwbbwbbw| 超碰97女国产丝袜美腿| 边摸边添奶的三级视频| 9国产精品久久久久麻豆| 激情熟女少妇激情熟女少妇| 精品久久久久久久无码人妻热| 任你爽不一样的精品久久| 久久久久久成人毛片免费看| 12周岁女裸体啪啪自慰高清 | 鲁鲁鲁鲁鲁在线观看视频| 日本一区二区不卡高清| 日韩精品高清在线视频| 日韩一区二区三区高清视频| 91精品国产成人综合| 亚洲A无码综合A国产AV中文| 亚洲欧美日产国产一区二区| 久久久精品一区二区三区三州| 被扣逼操逼嗯嗯啊啊叫视频| 12周岁女裸体啪啪自慰高清| 最近日本免费观看高清视频| 精品久久久久久亚洲91| AV不卡在线看波多野结衣| 俄罗斯一区二区在线视频| av中文字幕在线观看一区二区| 丰满诱人一区二区三区| 亚洲大尺度在线观看视频| AV无码成人精品区一级毛片 | 国产国语对白又大又粗又爽| 91精品国产乱码久久蜜桃av| 性别 隐 偷窥 TUBE2| 1024看片金沙日韩一区二区| 国产高清第一区第二区第一页| 十八岁肥乳少女日屌视频| 激情亚洲内射一区二区三区| 加勒比人妻av无码不卡| 国精品无码一区二区三区在线蜜| 男受被做哭激烈娇喘音频| 色欲AV无码一区二区三区不卡| 黑人大鸡巴插中国女人阴道| 国产精品99久久久久久有的能| 国产91福利精品免费观看| AV无码成人精品区一级毛片| 日本一区二区三区在线网| 超碰人人超一区二区三区| 校花娇躯抽搐呻吟嗯啊第八章| 综合网亚洲成色最大综合在线 | 国产高潮流白浆喷水免费a片 | 国产自美女在线精品尤物| 黄色一级人与人毛毛无码 | 干174骚逼模特啪啪视频| 免费观看美女被操视频软件| 亚洲国产午夜精彩无码福利| 亚洲不卡一区二区av| 欧美美女喜欢被三根鸡巴插| 91丨亚洲丨国产熟女| 超肉感大乳巨凥BBwBBw| 搞黄色真人示范大全免费 | 国产精品久久久久精品三级ⅰ| 少妇无码AV无码转区线| 青青草激情视频在线播放| 男人的天堂日韩爱爱免费| 成人国产精品一区二区香蕉| 可以插女生隐私部位的视频| 禁16情趣白虎美女自慰| AV制服丝袜一区二区三区| 外国美女靠逼插逼吞精视频| 影音先锋熟女av鲁色资源网| 一本综合久久国产二区| 91精品婷婷国产综合久久8| 噜噜视频操逼操屁眼app| 办公室熟妇人妻久久精品| 日韩精品一区二区av蜜桃| 性色av一区二区三区久久久| 久久久久久国产精品一级| 青青草原精品资源站久久| 高清偷窥女厕嘘嘘24p| 国产精品无码卡在线播放| 又黄又爽又高潮的无遮挡| 日韩精品免费一区二区夜夜嗨| 亚洲婷婷五月综合狠狠app| 射精爆菊操小穴肛门视频| 国产美女主播美腿丝袜诱惑我操B 国产精品无码永久免费男叫 | 在线 一区二区三区四区| 日韩高清美女一区不卡 | 国内精品视这里只有精品| 精品国产一区二区色老头| 懂色av一区二区三区免费| 精品免费囯产一区二区三区四区| 亚洲av一二三又爽又色又色| 国产成人无码综合亚洲日韩软件| 一区二区三区欧美黑人性生活视频| 国产精品久久一区二区三| 可以免费观看的性爱视频| 嗯灬啊灬快灬高潮了视频动漫| 爱人体-看人体人体摄影| 色欲日本人妻久久久久久综合| 波多野结衣爽到高潮漏水| 亚洲一级二级三级视频在线观看| evalovia与黑人激情| 黑人操中国女人高清视频AA级| 亚洲自偷自拍另类在线观看| 国产精品性做久久久久久| 欧美贵妇办公室69激情| 后入东北老骚熟妇操逼肛交视频| 国产精品自产拍在线观看中文 | 国产精品三级久久三级| 波多野结衣无限高潮25 | 2019午夜视频福利在线| 日本一区二区三区高清免费| 91福利社区精品视频| 国产欧美日韩一区二区三区精品| 亚洲日产aV中文字幕人妖| 日韩欧美国产一区二区三区在线| 欧美 日韩 国内 自拍| 久久99这里只有精品99| 亚洲人成人77777在线播放| 精品国产综合久久久蜜臀观看| 欧美特级一区二区三区| 欧美日韩国产加勒比视频一区| 精品国产极品美女在线观看av | 哦哦 不要 啊啊 哦哦视频| 插插插激情插插插啊啊啊视频| 亚洲国产成人久久精品动漫 | 国产三级片日本三级片在线观看| 添BBB免费观看高清视频| 精品日本人妻一区二区三区在线| 机巴好大放不进去视频免费 | 久久精品中文字幕老司机| 草草在线观看免费高清在线观看|